Sebelum merakit sebuah PC pastikan peralatan yang dibutuhkan sudah
tersedia, peralatan yang dibutuhkan adalah sebagai berikut: obeng, tang,
AVO meter (bila ada), solder, timah solder, isolasi, tali pengikat
kabel dan buku catatan. Solder maupun AVO meter jarang dipakai apabila
mempergunakan komponen yang masih baik. Pengukuran arus dan tegangan
listrik hanya dilakukan apabila komponen yang digunakan adalah komponen
bekas yang saya tidak ketahui apakah masih baik atau tidak. Saya tidak
menggunakan AVO meter pada motherboard apabila motherboard masih baik,
karena saya tidak tahu titik-titik mana yang merupakan titik ukur.
Kecerobohan dalam hal ini bisa menimbulkan akibat fatal. Apabila saya
mempergunakan komponen baru, saya tidak perlu melakukan pengukuran arus
dan tegangan dengan AVO meter. AVO meter mungkin perlu dipergunakan
hanya untuk mengetahui tegangan listrik dijala-jala listrik rumah saya
saja. Saya sudah mengetahui dibagian power supply komputer (terdapat
didalam casing/kotak komputernya) apakah sudah diatur pada skala
tegangan yang sesuai dengan tegangan listrik ditempat saya/belum. Bila
type power supply-nya tergolong type otomatik saya tidak perlu khawatir.
Apabila power supply-nya tergolong semi otomatik, kemungkinan saya
harus memindahkan posisi saklar pengatur tegangan keposisi tegangan yang
sesuai dengan tegangan listrik ditempat saya.
Selanjutnya untuk merakit komputer personal saya mengikuti langkah-langkah sebagai berikut:
1) Ambil motherboard dan letakan ketempat yang aman. Persiapkan
peralatan dan buku manual dari masing komponen PC. Baut motherbooard
dengan papan casing, sehingga akan lebih kuat dan aman.
2) Memasang processor pada tempatnya (soket-nya) perhatikan tanda
pada processor harus ditempatkan sesuai dengan tanda yang ada pada soket
tersebut (tidak boleh terbalik). Mengunci tangkai pengunci yang
biasanya terdapat disisi soket processor. Perhatikan kode titik/sisi
processor yang bentuk miring merupakan petunjuk agar bagian processor
itu dipasang pada bagian slot yang memiliki tanda sama. Membaca dengan
baik manual processor dari pabriknya. Apabila saya kurang
hati-hati/terbalik memasang processor ini bisa berakibat fatal. Bila
ragu saat membeli motherboard saya tanyakan kepada penjualnya. Kemudian
memasang kipas pendingin diatasnya. Pada produk processor terakhir sudah
dilengkapi dengan kipas pendingin.
3) Memasang memori RAM pada tempatnya dengan baik, lihat sudut
memori yang biasanya berlekuk harus ditempatkan pada tempatnya secara
hati-hati. Apabila saya terbalik memasangnya, maka memori akan sulit
dimasukan. Pada jenis memori SDRAM, dudukan memori di motherboard
memiliki pengunci yang akan bergerak mengunci bersamaan dengan masuknya
memori kedalamnya.
4) Memasukan motherboard kedalam cashing (kotak komputer),
mengkaitkan pengait plastik yang biasa disediakan oleh pabrik cashing,
kedalam lubang yang terdapat pada motherboard. Pada sudut yang
memungkinkan saya tempatkan baut, baut motherboard tersebut pada cashing
untuk menghindarkan terjadinya pergeseran motherboard pada waktu
memindah2kan CPU. Hati-hati memindahkan motherboard pada cashing karena
bentuknya tipis kecil dan memiliki rangkaian elektronik yang rumit.
5) Memasang kabel khusus catu daya motherboard yang ada pada power
supply (biasanya dituliskan P8 dan P9), kabel berwarna hitam dari kedua
konektornya harus dipasang berdampingan. Apabila saya mempergunakan
jenis motherboard jenis ATX, memasang kabel power khusus tersebut pada
slot power khusus ATX yang terdapat pada motherboard tersebut.
6) Memasang hard disk, floppy drive pada tempat yang telah dalam
cashing CPU, mengencangkan dudukannya dengan baut secara hati-hati. Bila
ada CD ROM drive, pasangkan pula alat ini secara hati-hati dan
dikencangkan dengan baut. Perlu diperhatikan untuk CD-ROM dan hard disk
jumper terpasang dengan benar, karena akan mengidentifikasikan sebagai
master/slave, karena jika salah hard disk atau CD-ROM tidak akan
terdeteksi.
7) Menyambung kabel dari power supply ke slot power yang terdapat
di hard disk, floppy drive, dan CD ROM drive. Perhatikan sudut konektor
plastiknya pada kabel tersebut biasanya sudah dirancang pas sesuai
dengan dududkan yang terdapat pada hard disk, floppy drive, atau CD ROM
drive. Bila saya memasang konektor ini terbalik, maka pada saat saya
memasukan konektor tersebut akan terasa sedikit sulit. Segeralah cabut
konektornya dan masukan kembali pada posisi yang tepat.
8) Menyambung kabel pita (kabel data) pada dudukan hard disk,
floppy drive dan CD ROM drive. Kabel ini berfungsi untuk menghubungkan
peralatan tersebut ke motherboard. Perhatikan sisi kabel berwarna merah
harus ditempatkan pada kaki nomor satu (lihat keterangan yang dituliskan
pada hard disk/floppy drive/CD ROM drive). Bila terbalik memasangkannya
komputer tidak akan bekerja baik dan dapat merusak peralatan2 tersebut.
Kabel yang terpasang ke floppy drive lebih sempit bila dibandingkan
kabel penghubung hard disk ataupun CD ROM drive. Kabel penghubung hard
disk dan CD ROM drive sama ukurannya. Untuk kabel pita strip merah pada
pinggir kabel menandakan no.1
9) Menyambung kabel dari floppy drive ke slot untuk floppy drive,
demikian pula menyambungkan kabel dari hard disk ke slot IDE nomor 1,
dan kabel dari CD ROM ke slot IDE nomor 2. Perhatikan juga agar sisi
kabel berwarna merah harus menempati kaki nomor 1 pada tiap slot. Saya
bisa melihat keterangan yang tertulis di motherboard ataupun di manual
motherboard.
10) Memasang VGA card pada slotnya, bila saya memiliki card dari jenis
ISA, saya harus menempatkan card tersebut pada ISA slot bus di
motherboard. Bila saya memiliki card VGA jenis PCI, saya harus memasang
card tersebut pada slot bus PCI di motherboard. Tetapi jika VGA berupa
VGA onboard, tinggal mengatur dalam BIOS.
11) Memasang expansion card tambahan pada PCI maupun ISA. Expansion
card dapat berupa LAN card sound card, TV tunner card , video capture,
dll. Setelah itu mengencangkan dengan baut dengan dudukan cashing PC.
12) Menghubungkan konektor kabel penghubung tombol “Reset” ke pin
“Reset” yang terdapat pada motherboard. Hubungkan pula konektor kabel
penghubung speaker ke pin bertuliskan speaker yang ada pada motherboard.
Sering ditulis dengan kode LS. Beberapa cashing telah dilengkapi pula
kabel lampu indikator berikut kabel penghubungnya lengkap dengan
konektornya agar perakit komputer tinggal menghubungkan saja ke
motherboard.
13) Memasang kabel data dari monitor ke slot yang terdapat di carad
VGA, perhatikan konektornya memiliki 3 deretan kaki yang tersusun rapi,
dengan konektor berbentuk trapesium.
14) Memasang konektor keyboard ke slot keyboard yang terdapat di motherboard. Dan perangkat yang lain.
15) Memasang kabel listrik (power) dari layar monitor ke slot power
yang terdapat dibagian belakang power supply yang telah terpasang pada
cashing CPU. Bila konektornya tidak cocok, saya dapat memasang kabel
listrik tersebut ke jala2 listrik rumah saya. Saya akan membutuhkan T
konektor untuk membagi listrik ke monitor dan CPU yang saya rakit.
Memasang kabel listrik untuk CPU ke slot yang terdapat pada power supply
di bagian belakan cashing CPU.
Sekarang saya telah berhasil merakit sebuah Personal Computer (PC),
tetapi saya belum bisa mempergunakan komputer tersebut. Saya masih harus
mengatur program BIOS, dan memasang (menginstal) program sistem operasi
dan program aplikasi ke dalam hard disknya.
Sebelum saya mengatur program BIOS, saya cek kembali semua langkah yang
telah saya lakukan tadi. Perhatikan posisi “jumper” jangan ada yang
salah, demikian pula processor dan RAM serta kabel2 penghubung hard
disk, floppy drive dan CD ROM drive. Setelah saya yakin benar dan sudah
sesuai dengan keterangan yang tercantum dalam manual pabrik dari setiap
peralatan tadi. Saya bisa melakukan pengaturan program BIOS.
Rian Saputra
X TKJ 3
Kamis, 15 Desember 2011
Jumat, 04 November 2011
CUMA DI INDONESIA
WAJIB BACA :
1. Cuma di Indonesia seseorg bisa punya KTP lebih dari satu.
2. Cuma di Indonesia seseorg bisa punya SIM tanpa test.
3. Cuma di indonesia yang sering mati lampu dan gak ada airnya.
... 4. Cuma di Indonesia anak SD bisa beli rokok.
5. Cuma di Indonesia jumlah BB BM yg beredar jauh lebih banyak dari BB yang legal.
6. Cuma di Indonesia Duta Anti Narkoba ketangkep make Shabu.
7. Cuma di Indonesia pemerintahnya murah hati. Bagi-bagi pulau, lagu daerah, sampai tarian GRATISS!!
8. Cuma di Indonesia segala urusan bisa beres pake UANG.
9. Cuma di Indonesia kita bisa buang sampah dimana2 tanpa denda.
10. Cuma di Indonesia kita bisa naik angkutan umum tanpa harus nunggu di halte,dimana aja bisa.
11. Cuma di Indonesia makanan2 bekas dan kadaluwarsa bisa disulap jadi makanan siap jual lagi.
12. Cuma di Indonesia kita bisa off road di Jalan Raya (jalannya lobang semua)
13. Cuma di Indonesia pesawatnya gak di apa2in bisa jatuh.
14. Cuma di Indonesia, jembatan baruuu jadi, mur baut nya udah pada hilang buat di loak
15. Cuma di Indonesia jalan raya bisa jadi kolam renang.
16. Cuma di Indonesia, ada orang bisa nyebrang di jalan tol.
17. Cuma di Indonesia, kita bisa lesehan di atas kereta api yang sedang jalan. Asoy!
18. Cuma di Indonesia, orang gak lulus kuliah bisa jadi anggota DPR.
19. Cuma di Indonesia kita bisa nonton DVD dengan kualitas bagus hanya dengan membayar Rp. 7.000,-! (eh, kdg2 bisa 5000)
20. Cuma di Indonesia seorang ABG bisa menimbulkan kontroversi hebat.
Diperkosa pangeran, dinikahin sama si pangeran, abis itu disiksa, terus
pulang dan memberitakan ke seluruh dunia tentang penderitaannya. . oh
iya dan dapet job sinetron bernilai milyaran rupiah bahkan sebelum
kasusnya selesai.
23. Cuma di indonesia, rebonding haram hukumnya
24. Cuma di indonesia, facebook bawa bencana
25. Cuma di indonesia, bom dijual eceran...Gas 3kg
26. Cuma di indonesia tahanan bisa jalan2...
Negara '"meleset yg selalu ku bela"
Jumat, 23 September 2011
dioda
Dioda
Dioda | |
---|---|
Foto dari dioda semikonduktor | |
Simbol | |
Tipe | Komponen aktif |
Kategori | Semikonduktor (dioda kristal) Tabung hampa (dioda termionik) |
Penemu | Frederick Guthrie (1873) (dioda termionik) Karl Ferdinand Braun (1874) (dioda kristal) |
Sifat kesearahan yang dimiliki sebagian besar jenis dioda seringkali disebut karakteristik menyearahkan. Fungsi paling umum dari dioda adalah untuk memperbolehkan arus listrik mengalir dalam suatu arah (disebut kondisi panjar maju) dan untuk menahan arus dari arah sebaliknya (disebut kondisi panjar mundur). Karenanya, dioda dapat dianggap sebagai versi elektronik dari katup pada transmisi cairan.
Dioda sebenarnya tidak menunjukkan kesearahan hidup-mati yang sempurna (benar-benar menghantar saat panjar maju dan menyumbat pada panjar mundur), tetapi mempunyai karakteristik listrik tegangan-arus taklinier kompleks yang bergantung pada teknologi yang digunakan dan kondisi penggunaan. Beberapa jenis dioda juga mempunyai fungsi yang tidak ditujukan untuk penggunaan penyearahan.
Sejarah
Walaupun dioda kristal (semikonduktor) dipopulerkan sebelum dioda termionik, dioda termionik dan dioda kristal dikembangkan secara terpisah pada waktu yang bersamaan. Prinsip kerja dari dioda termionik ditemukan oleh Frederick Guthrie pada tahun 1873[1] Sedangkan prinsip kerja dioda kristal ditemukan pada tahun 1874 oleh peneliti Jerman, Karl Ferdinand Braun[2].Pada waktu penemuan, peranti seperti ini dikenal sebagai penyearah (rectifier). Pada tahun 1919, William Henry Eccles memperkenalkan istilah dioda yang berasal dari di berarti dua, dan ode (dari ὅδος) berarti "jalur".
Prinsip kerja
Prinsip kerja dioda termionik ditemukan kembali oleh Thomas Edison pada 13 Februari 1880 dan dia diberi hak paten pada tahun 1883 (U.S. Patent 307.031), namun tidak dikembangkan lebih lanjut. Braun mematenkan penyearah kristal pada tahun 1899[3]. Penemuan Braun dikembangkan lebih lanjut oleh Jagdish Chandra Bose menjadi sebuah peranti berguna untuk detektor radio.Penerima radio
Penerima radio pertama yang menggunakan dioda kristal dibuat oleh Greenleaf Whittier Pickard. Dioda termionik pertama dipatenkan di Inggris oleh John Ambrose Fleming (penasihat ilmiah untuk Perusahaan Marconi dan bekas karyawan Edison[4]) pada 16 November 1904 (diikuti oleh U.S. Patent 803.684 pada November 1905). Pickard mendapatkan paten untuk detektor kristal silikon pada 20 November 1906 (U.S. Patent 836.531).Dioda termionik
Dioda termionik adalah sebuah peranti katup termionik yang merupakan susunan elektroda-elektroda di ruang hampa dalam sampul gelas. Dioda termionik pertama bentuknya sangat mirip dengan bola lampu pijar.Dalam dioda katup termionik, arus listrik yang melalui filamen pemanas secara tidak langsung memanaskan katoda (Beberapa dioda menggunakan pemanasan langsung, dimana filamen wolfram berlaku sebagai pemanas sekaligus juga sebagai katoda), elektroda internal lainnya dilapisi dengan campuran barium dan strontium oksida, yang merupakan oksida dari logam alkali tanah. Substansi tersebut dipilih karena memiliki fungsi kerja yang kecil. Bahang yang dihasilkan menimbulkan pancaran termionik elektron ke ruang hampa. Dalam operasi maju, elektroda logam disebelah yang disebut anoda diberi muatan positif jadi secara elektrostatik menarik elektron yang terpancar.
Walaupun begitu, elektron tidak dapat dipancarkan dengan mudah dari permukaan anoda yang tidak terpanasi ketika polaritas tegangan dibalik. Karenanya, aliran listrik terbalik apapun yang dihasilkan dapat diabaikan.
Dalam sebagian besar abad ke-20, dioda katup termionik digunakan dalam penggunaan isyarat analog, dan sebagai penyearah pada pemacu daya. Saat ini, dioda katup hanya digunakan pada penggunaan khusus seperti penguat gitar listrik, penguat audio kualitas tinggi serta peralatan tegangan dan daya tinggi.
Dioda semikonduktor
Sebagian besar dioda saat ini berdasarkan pada teknologi pertemuan p-n semikonduktor. Pada dioda p-n, arus mengalir dari sisi tipe-p (anoda) menuju sisi tipe-n (katoda), tetapi tidak mengalir dalam arah sebaliknya.Tipe lain dari dioda semikonduktor adalah dioda Schottky yang dibentuk dari pertemuan antara logam dan semikonduktor (sawar Schottky) sebagai ganti pertemuan p-n konvensional.
Karakteristik arus–tegangan
Karakteristik arus–tegangan dari dioda, atau kurva I–V, berhubungan dengan perpindahan dari pembawa melalui yang dinamakan lapisan penipisan atau daerah pemiskinan yang terdapat pada pertemuan p-n di antara semikonduktor. Ketika pertemuan p-n dibuat, elektron pita konduksi dari daerah N menyebar ke daerah P dimana terdapat banyak lubang yang menyebabkan elektron bergabung dan mengisi lubang yang ada, baik lubang dan elektron bebas yang ada lenyap, meninggalkan donor bermuatan positif pada sisi-N dan akseptor bermuatan negatif pada sisi-P. Daerah disekitar pertemuan p-n menjadi dimiskinkan dari pembawa muatan dan karenanya berlaku sebagai isolator.Walaupun begitu, lebar dari daerah pemiskinan tidak dapat tumbuh tanpa batas. Untuk setiap pasangan elektron-lubang yang bergabung, ion pengotor bermuatan positif ditinggalkan pada daerah terkotori-n dan ion pengotor bermuatan negatif ditinggalkan pada daerah terkotori-p. Saat penggabungan berlangsung dan lebih banyak ion ditimbulkan, sebuah medan listrik terbentuk di dalam daerah pemiskinan yang memperlambat penggabungan dan akhirnya menghentikannya. Medan listrik ini menghasilkan tegangan tetap dalam pertemuan.
Jenis-jenis dioda semikonduktor
Beberapa jenis diodaAda beberapa jenis dari dioda pertemuan yang hanya menekankan perbedaan pada aspek fisik baik ukuran geometrik, tingkat pengotoran, jenis elektroda ataupun jenis pertemuan, atau benar-benar peranti berbeda seperti dioda Gunn, dioda laser dan dioda MOSFET.Dioda biasa
Beroperasi seperti penjelasan di atas. Biasanya dibuat dari silikon terkotori atau yang lebih langka dari germanium. Sebelum pengembangan dioda penyearah silikon modern, digunakan kuprous oksida (kuprox)dan selenium, pertemuan ini memberikan efisiensi yang rendah dan penurunan tegangan maju yang lebih tinggi (biasanya 1.4–1.7 V tiap pertemuan, dengan banyak lapisan pertemuan ditumpuk untuk mempertinggi ketahanan terhadap tegangan terbalik), dan memerlukan benaman bahan yang besar (kadang-kadang perpanjangan dari substrat logam dari dioda), jauh lebih besar dari dioda silikon untuk rating arus yang sama.[sunting] Dioda bandangan
Dioda yang menghantar pada arah terbalik ketika tegangan panjar mundur melebihi tegangan dadal dari pertemuan P-N. Secara listrik mirip dan sulit dibedakan dengan dioda Zener, dan kadang-kadang salah disebut sebagai dioda Zener, padahal dioda ini menghantar dengan mekanisme yang berbeda yaitu efek bandangan. Efek ini terjadi ketika medan listrik terbalik yang membentangi pertemuan p-n menyebabkan gelombang ionisasi pada pertemuan, menyebabkan arus besar mengalir melewatinya, mengingatkan pada terjadinya bandangan yang menjebol bendungan. Dioda bandangan didesain untuk dadal pada tegangan terbalik tertentu tanpa menjadi rusak. Perbedaan antara dioda bandangan (yang mempunyai tegangan dadal terbalik diatas 6.2 V) dan dioda Zener adalah panjang kanal yang melebihi rerata jalur bebas dari elektron, jadi ada tumbukan antara mereka. Perbedaan yang mudah dilihat adalah keduanya mempunyai koefisien suhu yang berbeda, dioda bandangan berkoefisien positif, sedangkan Zener berkoefisien negatif.[sunting] Dioda Cat's whisker
Ini adalah salah satu jenis dioda kontak titik. Dioda cat's whisker terdiri dari kawat logam tipis dan tajam yang ditekankan pada kristal semikonduktor, biasanya galena atau sepotong batu bara[5]. Kawatnya membentuk anoda dan kristalnya membentuk katoda. Dioda Cat's whisker juga disebut dioda kristal dan digunakan pada penerima radio kristal.Dioda arus tetap
Ini sebenarnya adalah sebuah JFET dengan kaki gerbangnya disambungkan langsung ke kaki sumber, dan berfungsi seperti pembatas arus dua saluran (analog dengan Zener yang membatasi tegangan). Peranti ini mengizinkan arus untuk mengalir hingga harga tertentu, dan lalu menahan arus untuk tidak bertambah lebih lanjut.Esaki atau dioda terobosan
Dioda ini mempunyai karakteristik resistansi negatif pada daerah operasinya yang disebabkan oleh quantum tunneling, karenanya memungkinkan penguatan isyarat dan sirkuit dwimantap sederhana. Dioda ini juga jenis yang paling tahan terhadap radiasi radioaktif.Dioda Gunn
Dioda ini mirip dengan dioda terowongan karena dibuat dari bahan seperti GaAs atau InP yang mempunyai daerah resistansi negatif. Dengan panjar yang semestinya, domain dipol terbentuk dan bergerak melalui dioda, memungkinkan osilator gelombang mikro frekuensi tinggi dibuat.Demodulasi radio
Penggunaan pertama dioda adalah demodulasi dari isyarat radio modulasi amplitudo (AM). Dioda menyearahkan isyarat AM frekuensi radio, meninggalkan isyarat audio. Isyarat audio diambil dengan menggunakan tapis elektronik sederhana dan dikuatkan.Pengubahan daya
Dioda Zener adalah dioda yang memiliki karakteristik menyalurkan arus listrik mengalir ke arah yang berlawanan jika tegangan yang diberikan melampaui batas "tegangan tembus" (breakdown voltage) atau "tegangan Zener". Ini berlainan dari dioda biasa yang hanya menyalurkan arus listrik ke satu arah.Dioda yang biasa tidak akan mengalirkan arus listrik untuk mengalir secara berlawanan jika dicatu-balik (reverse-biased) di bawah tegangan rusaknya. Jika melampaui batas tegangan operasional, dioda biasa akan menjadi rusak karena kelebihan arus listrik yang menyebabkan panas. Namun proses ini adalah reversibel jika dilakukan dalam batas kemampuan. Dalam kasus pencatuan-maju (sesuai dengan arah gambar panah), dioda ini akan memberikan tegangan jatuh (drop voltage) sekitar 0.6 Volt yang biasa untuk dioda silikon. Tegangan jatuh ini tergantung dari jenis dioda yang dipakai.
Sebuah dioda Zener memiliki sifat yang hampir sama dengan dioda biasa, kecuali bahwa alat ini sengaja dibuat dengan tegangan tembus yang jauh dikurangi, disebut tegangan Zener. Sebuah dioda Zener memiliki p-n junction yang memiliki doping berat, yang memungkinkan elektron untuk tembus (tunnel) dari pita valensi material tipe-p ke dalam pita konduksi material tipe-n. Sebuah dioda zener yang dicatu-balik akan menunjukan perilaku tegangan tembus yang terkontrol dan akan melewatkan arus listrik untuk menjaga tegangan jatuh supaya tetap pada tegangan zener. Sebagai contoh, sebuah diode zener 3.2 Volt akan menunjukan tegangan jatuh pada 3.2 Volt jika diberi catu-balik. Namun, karena arusnya terbatasi, sehingga dioda zener biasanya digunakan untuk membangkitkan tegangan referensi, untuk menstabilisasi tegangan aplikasi-aplikasi arus kecil, untuk melewatkan arus besar diperlukan rangkaian pendukung IC atau beberapa transistor sebagai output.
Tegangan tembusnya dapat dikontrol secara tepat dalam proses doping. Toleransi dalam 0.05% bisa dicapai walaupun toleransi yang paling biasa adalah 5% dan 10%.
Efek ini ditemukan oleh seorang fisikawan Amerika, Clarence Melvin Zener.
Mekanisme lainnya yang menghasilkan efek yang sama adalah efek avalanche, seperti di dalam dioda avalanche. Kedua tipe dioda ini sebenarnya dibentuk melalui proses yang sama dan kedua efek sebenarnya terjadi di kedua tipe dioda ini. Dalam dioda silikon, sampai dengan 5.6 Volt, efek zener adalah efek utama dan efek ini menunjukan koefisiensi temperatur yang negatif. Di atas 5.6 Volt, efek avalanche menjadi efek utama dan juga menunjukan sifat koefisien temperatur positif.
Dalam dioda zener 5.6 Volt, kedua efek tersebut muncul bersamaan dan kedua koefisien temperatur membatalkan satu sama lainnya. Sehingga, dioda 5.6 Volt menjadi pilihan utama di aplikasi temperatur yang sensitif.
Teknik-teknik manufaktur yang modern telah memungkinkan untuk membuat dioda-dioda yang memiliki tegangan jauh lebih rendah dari 5.6 Volt dengan koefisien temperatur yang sangat kecil. Namun dengan munculnya pemakai tegangan tinggi, koefisien temperatur muncul dengan singkat pula. Sebuah dioda untuk 75 Volt memiliki koefisien panas yang 10 kali lipatnya koefisien sebuah dioda 12 Volt.
Semua dioda di pasaran dijual dengan tanda tulisan atau kode voltase operasinya ditulis dipermukaan kristal dioda , biasanya dijual dinamakan dioda Zener.
[sunting] Pemakaian
Dioda Zener digunakan secara luas dalam sirkuit elektronik. Fungsi utamanya adalah untuk menstabilkan tegangan. Pada saat disambungkan secara parallel dengan sebuah sumber tegangan yang berubah-ubah yang dipasang sehingga mencatu-balik, sebuah dioda zener akan bertingkah seperti sebuah kortsleting (hubungan singkat) saat tegangan mencapai tegangan tembus diode tersebut. Hasilnya, tegangan akan dibatasi sampai ke sebuah angka yang telah ditetapkan sebelumnya.Sebuah dioda zener juga digunakan seperti ini sebagai regulator tegangan shunt (shunt berarti sambungan parallel, dan regulator tegangan sebagai sebuah kelas sirkuit yang memberikan sumber tegangan tetap.
Selasa, 20 September 2011
Dioda
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Dioda | |
---|---|
Foto dari dioda semikonduktor | |
Simbol | |
Tipe | Komponen aktif |
Kategori | Semikonduktor (dioda kristal) Tabung hampa (dioda termionik) |
Penemu | Frederick Guthrie (1873) (dioda termionik) Karl Ferdinand Braun (1874) (dioda kristal) |
Sifat kesearahan yang dimiliki sebagian besar jenis dioda seringkali disebut karakteristik menyearahkan. Fungsi paling umum dari dioda adalah untuk memperbolehkan arus listrik mengalir dalam suatu arah (disebut kondisi panjar maju) dan untuk menahan arus dari arah sebaliknya (disebut kondisi panjar mundur). Karenanya, dioda dapat dianggap sebagai versi elektronik dari katup pada transmisi cairan.
Dioda sebenarnya tidak menunjukkan kesearahan hidup-mati yang sempurna (benar-benar menghantar saat panjar maju dan menyumbat pada panjar mundur), tetapi mempunyai karakteristik listrik tegangan-arus taklinier kompleks yang bergantung pada teknologi yang digunakan dan kondisi penggunaan. Beberapa jenis dioda juga mempunyai fungsi yang tidak ditujukan untuk penggunaan penyearahan.
Sejarah
Walaupun dioda kristal (semikonduktor) dipopulerkan sebelum dioda termionik, dioda termionik dan dioda kristal dikembangkan secara terpisah pada waktu yang bersamaan. Prinsip kerja dari dioda termionik ditemukan oleh Frederick Guthrie pada tahun 1873[1] Sedangkan prinsip kerja dioda kristal ditemukan pada tahun 1874 oleh peneliti Jerman, Karl Ferdinand Braun[2].Pada waktu penemuan, peranti seperti ini dikenal sebagai penyearah (rectifier). Pada tahun 1919, William Henry Eccles memperkenalkan istilah dioda yang berasal dari di berarti dua, dan ode (dari ὅδος) berarti "jalur".
[sunting] Prinsip kerja
Prinsip kerja dioda termionik ditemukan kembali oleh Thomas Edison pada 13 Februari 1880 dan dia diberi hak paten pada tahun 1883 (U.S. Patent 307.031), namun tidak dikembangkan lebih lanjut. Braun mematenkan penyearah kristal pada tahun 1899[3]. Penemuan Braun dikembangkan lebih lanjut oleh Jagdish Chandra Bose menjadi sebuah peranti berguna untuk detektor radio.[sunting] Penerima radio
Penerima radio pertama yang menggunakan dioda kristal dibuat oleh Greenleaf Whittier Pickard. Dioda termionik pertama dipatenkan di Inggris oleh John Ambrose Fleming (penasihat ilmiah untuk Perusahaan Marconi dan bekas karyawan Edison[4]) pada 16 November 1904 (diikuti oleh U.S. Patent 803.684 pada November 1905). Pickard mendapatkan paten untuk detektor kristal silikon pada 20 November 1906 (U.S. Patent 836.531).[sunting] Dioda termionik
Dioda termionik adalah sebuah peranti katup termionik yang merupakan susunan elektroda-elektroda di ruang hampa dalam sampul gelas. Dioda termionik pertama bentuknya sangat mirip dengan bola lampu pijar.Dalam dioda katup termionik, arus listrik yang melalui filamen pemanas secara tidak langsung memanaskan katoda (Beberapa dioda menggunakan pemanasan langsung, dimana filamen wolfram berlaku sebagai pemanas sekaligus juga sebagai katoda), elektroda internal lainnya dilapisi dengan campuran barium dan strontium oksida, yang merupakan oksida dari logam alkali tanah. Substansi tersebut dipilih karena memiliki fungsi kerja yang kecil. Bahang yang dihasilkan menimbulkan pancaran termionik elektron ke ruang hampa. Dalam operasi maju, elektroda logam disebelah yang disebut anoda diberi muatan positif jadi secara elektrostatik menarik elektron yang terpancar.
Walaupun begitu, elektron tidak dapat dipancarkan dengan mudah dari permukaan anoda yang tidak terpanasi ketika polaritas tegangan dibalik. Karenanya, aliran listrik terbalik apapun yang dihasilkan dapat diabaikan.
Dalam sebagian besar abad ke-20, dioda katup termionik digunakan dalam penggunaan isyarat analog, dan sebagai penyearah pada pemacu daya. Saat ini, dioda katup hanya digunakan pada penggunaan khusus seperti penguat gitar listrik, penguat audio kualitas tinggi serta peralatan tegangan dan daya tinggi.
[sunting] Dioda semikonduktor
Sebagian besar dioda saat ini berdasarkan pada teknologi pertemuan p-n semikonduktor. Pada dioda p-n, arus mengalir dari sisi tipe-p (anoda) menuju sisi tipe-n (katoda), tetapi tidak mengalir dalam arah sebaliknya.Tipe lain dari dioda semikonduktor adalah dioda Schottky yang dibentuk dari pertemuan antara logam dan semikonduktor (sawar Schottky) sebagai ganti pertemuan p-n konvensional.
[sunting] Karakteristik arus–tegangan
Karakteristik arus–tegangan dari dioda, atau kurva I–V, berhubungan dengan perpindahan dari pembawa melalui yang dinamakan lapisan penipisan atau daerah pemiskinan yang terdapat pada pertemuan p-n di antara semikonduktor. Ketika pertemuan p-n dibuat, elektron pita konduksi dari daerah N menyebar ke daerah P dimana terdapat banyak lubang yang menyebabkan elektron bergabung dan mengisi lubang yang ada, baik lubang dan elektron bebas yang ada lenyap, meninggalkan donor bermuatan positif pada sisi-N dan akseptor bermuatan negatif pada sisi-P. Daerah disekitar pertemuan p-n menjadi dimiskinkan dari pembawa muatan dan karenanya berlaku sebagai isolator.Walaupun begitu, lebar dari daerah pemiskinan tidak dapat tumbuh tanpa batas. Untuk setiap pasangan elektron-lubang yang bergabung, ion pengotor bermuatan positif ditinggalkan pada daerah terkotori-n dan ion pengotor bermuatan negatif ditinggalkan pada daerah terkotori-p. Saat penggabungan berlangsung dan lebih banyak ion ditimbulkan, sebuah medan listrik terbentuk di dalam daerah pemiskinan yang memperlambat penggabungan dan akhirnya menghentikannya. Medan listrik ini menghasilkan tegangan tetap dalam pertemuan.
[sunting] Jenis-jenis dioda semikonduktor
Ada beberapa jenis dari dioda pertemuan yang hanya menekankan perbedaan pada aspek fisik baik ukuran geometrik, tingkat pengotoran, jenis elektroda ataupun jenis pertemuan, atau benar-benar peranti berbeda seperti dioda Gunn, dioda laser dan dioda MOSFET.[sunting] Dioda biasa
Beroperasi seperti penjelasan di atas. Biasanya dibuat dari silikon terkotori atau yang lebih langka dari germanium. Sebelum pengembangan dioda penyearah silikon modern, digunakan kuprous oksida (kuprox)dan selenium, pertemuan ini memberikan efisiensi yang rendah dan penurunan tegangan maju yang lebih tinggi (biasanya 1.4–1.7 V tiap pertemuan, dengan banyak lapisan pertemuan ditumpuk untuk mempertinggi ketahanan terhadap tegangan terbalik), dan memerlukan benaman bahan yang besar (kadang-kadang perpanjangan dari substrat logam dari dioda), jauh lebih besar dari dioda silikon untuk rating arus yang sama.[sunting] Dioda bandangan
Dioda yang menghantar pada arah terbalik ketika tegangan panjar mundur melebihi tegangan dadal dari pertemuan P-N. Secara listrik mirip dan sulit dibedakan dengan dioda Zener, dan kadang-kadang salah disebut sebagai dioda Zener, padahal dioda ini menghantar dengan mekanisme yang berbeda yaitu efek bandangan. Efek ini terjadi ketika medan listrik terbalik yang membentangi pertemuan p-n menyebabkan gelombang ionisasi pada pertemuan, menyebabkan arus besar mengalir melewatinya, mengingatkan pada terjadinya bandangan yang menjebol bendungan. Dioda bandangan didesain untuk dadal pada tegangan terbalik tertentu tanpa menjadi rusak. Perbedaan antara dioda bandangan (yang mempunyai tegangan dadal terbalik diatas 6.2 V) dan dioda Zener adalah panjang kanal yang melebihi rerata jalur bebas dari elektron, jadi ada tumbukan antara mereka. Perbedaan yang mudah dilihat adalah keduanya mempunyai koefisien suhu yang berbeda, dioda bandangan berkoefisien positif, sedangkan Zener berkoefisien negatif.[sunting] Dioda Cat's whisker
Ini adalah salah satu jenis dioda kontak titik. Dioda cat's whisker terdiri dari kawat logam tipis dan tajam yang ditekankan pada kristal semikonduktor, biasanya galena atau sepotong batu bara[5]. Kawatnya membentuk anoda dan kristalnya membentuk katoda. Dioda Cat's whisker juga disebut dioda kristal dan digunakan pada penerima radio kristal.[sunting] Dioda arus tetap
Ini sebenarnya adalah sebuah JFET dengan kaki gerbangnya disambungkan langsung ke kaki sumber, dan berfungsi seperti pembatas arus dua saluran (analog dengan Zener yang membatasi tegangan). Peranti ini mengizinkan arus untuk mengalir hingga harga tertentu, dan lalu menahan arus untuk tidak bertambah lebih lanjut.[sunting] Esaki atau dioda terobosan
Dioda ini mempunyai karakteristik resistansi negatif pada daerah operasinya yang disebabkan oleh quantum tunneling, karenanya memungkinkan penguatan isyarat dan sirkuit dwimantap sederhana. Dioda ini juga jenis yang paling tahan terhadap radiasi radioaktif.[sunting] Dioda Gunn
Dioda ini mirip dengan dioda terowongan karena dibuat dari bahan seperti GaAs atau InP yang mempunyai daerah resistansi negatif. Dengan panjar yang semestinya, domain dipol terbentuk dan bergerak melalui dioda, memungkinkan osilator gelombang mikro frekuensi tinggi dibuat.[sunting] Demodulasi radio
Penggunaan pertama dioda adalah demodulasi dari isyarat radio modulasi amplitudo (AM). Dioda menyearahkan isyarat AM frekuensi radio, meninggalkan isyarat audio. Isyarat audio diambil dengan menggunakan tapis elektronik sederhana dan dikuatkan.[sunting] Pengubahan daya
Dioda Zener adalah dioda yang memiliki karakteristik menyalurkan arus listrik mengalir ke arah yang berlawanan jika tegangan yang diberikan melampaui batas "tegangan tembus" (breakdown voltage) atau "tegangan Zener". Ini berlainan dari dioda biasa yang hanya menyalurkan arus listrik ke satu arah.Dioda yang biasa tidak akan mengalirkan arus listrik untuk mengalir secara berlawanan jika dicatu-balik (reverse-biased) di bawah tegangan rusaknya. Jika melampaui batas tegangan operasional, dioda biasa akan menjadi rusak karena kelebihan arus listrik yang menyebabkan panas. Namun proses ini adalah reversibel jika dilakukan dalam batas kemampuan. Dalam kasus pencatuan-maju (sesuai dengan arah gambar panah), dioda ini akan memberikan tegangan jatuh (drop voltage) sekitar 0.6 Volt yang biasa untuk dioda silikon. Tegangan jatuh ini tergantung dari jenis dioda yang dipakai.
Sebuah dioda Zener memiliki sifat yang hampir sama dengan dioda biasa, kecuali bahwa alat ini sengaja dibuat dengan tegangan tembus yang jauh dikurangi, disebut tegangan Zener. Sebuah dioda Zener memiliki p-n junction yang memiliki doping berat, yang memungkinkan elektron untuk tembus (tunnel) dari pita valensi material tipe-p ke dalam pita konduksi material tipe-n. Sebuah dioda zener yang dicatu-balik akan menunjukan perilaku tegangan tembus yang terkontrol dan akan melewatkan arus listrik untuk menjaga tegangan jatuh supaya tetap pada tegangan zener. Sebagai contoh, sebuah diode zener 3.2 Volt akan menunjukan tegangan jatuh pada 3.2 Volt jika diberi catu-balik. Namun, karena arusnya terbatasi, sehingga dioda zener biasanya digunakan untuk membangkitkan tegangan referensi, untuk menstabilisasi tegangan aplikasi-aplikasi arus kecil, untuk melewatkan arus besar diperlukan rangkaian pendukung IC atau beberapa transistor sebagai output.
Tegangan tembusnya dapat dikontrol secara tepat dalam proses doping. Toleransi dalam 0.05% bisa dicapai walaupun toleransi yang paling biasa adalah 5% dan 10%.
Efek ini ditemukan oleh seorang fisikawan Amerika, Clarence Melvin Zener.
Mekanisme lainnya yang menghasilkan efek yang sama adalah efek avalanche, seperti di dalam dioda avalanche. Kedua tipe dioda ini sebenarnya dibentuk melalui proses yang sama dan kedua efek sebenarnya terjadi di kedua tipe dioda ini. Dalam dioda silikon, sampai dengan 5.6 Volt, efek zener adalah efek utama dan efek ini menunjukan koefisiensi temperatur yang negatif. Di atas 5.6 Volt, efek avalanche menjadi efek utama dan juga menunjukan sifat koefisien temperatur positif.
Dalam dioda zener 5.6 Volt, kedua efek tersebut muncul bersamaan dan kedua koefisien temperatur membatalkan satu sama lainnya. Sehingga, dioda 5.6 Volt menjadi pilihan utama di aplikasi temperatur yang sensitif.
Teknik-teknik manufaktur yang modern telah memungkinkan untuk membuat dioda-dioda yang memiliki tegangan jauh lebih rendah dari 5.6 Volt dengan koefisien temperatur yang sangat kecil. Namun dengan munculnya pemakai tegangan tinggi, koefisien temperatur muncul dengan singkat pula. Sebuah dioda untuk 75 Volt memiliki koefisien panas yang 10 kali lipatnya koefisien sebuah dioda 12 Volt.
Semua dioda di pasaran dijual dengan tanda tulisan atau kode voltase operasinya ditulis dipermukaan kristal dioda , biasanya dijual dinamakan dioda Zener.
[sunting] Pemakaian
Dioda Zener digunakan secara luas dalam sirkuit elektronik. Fungsi utamanya adalah untuk menstabilkan tegangan. Pada saat disambungkan secara parallel dengan sebuah sumber tegangan yang berubah-ubah yang dipasang sehingga mencatu-balik, sebuah dioda zener akan bertingkah seperti sebuah kortsleting (hubungan singkat) saat tegangan mencapai tegangan tembus diode tersebut. Hasilnya, tegangan akan dibatasi sampai ke sebuah angka yang telah ditetapkan sebelumnya.Sebuah dioda zener juga digunakan seperti ini sebagai regulator tegangan shunt (shunt berarti sambungan parallel, dan regulator tegangan sebagai sebuah kelas sirkuit yang memberikan sumber tegangan tetap.
Langganan:
Postingan (Atom)